

Lattice QCD for Neutrino Physics

William Detmold MIT

Plan

- Neutrino interactions with nucleons and nuclei
- Nucleon and transition form factors
- Deep inelastic structure
- Nuclear effects

Neutrino Scattering

- vN, vA cross sections needed to extract of oscillation parameters
- Scatter with various kinematics (beams are not mono-energetic)
- (Quasi)-elastic scattering determined by nucleon axial, PS, ... form factors
- Resonance: determined by transition FFs
- DIS: parton distributions

Neutrino Scattering

(Quasi-)elastic scatting

Elastic scattering determined by nucleon FFs

$$\frac{d\sigma}{dQ^2} = \frac{G_F^2 M^2 |V_{ud}|^2}{8\pi E_\nu^2} \left[A \pm \frac{(s-u)}{M^2} B + \frac{(s-u)^2}{M^4} C \right]$$

$$A = \frac{(m^{2} + Q^{2})}{M^{2}} \left[(1 + \eta) F_{A}^{2} - (1 - \eta) F_{1}^{2} \right]$$

$$+ \eta (1 - \eta) F_{2}^{2} + 4\eta F_{1} F_{2}$$

$$- \frac{m^{2}}{4M^{2}} \left((F_{1} + F_{2})^{2} + (F_{A} + 2F_{P})^{2} \right)$$

$$- \left(\frac{Q^{2}}{M^{2}} + 4 \right) F_{P}^{2} \right)$$

$$B = \frac{Q^{2}}{M^{2}} F_{A} (F_{1} + F_{2})$$

$$C = \frac{1}{4} \left(F_{A}^{2} + F_{1}^{2} + \eta F_{2}^{2} \right)$$

$$- \left(\frac{Q^{2}}{M^{2}} + 4 \right) F_{P}^{2} \right)$$

- Vector current: F_{1,2} FFs well constrained from e⁻N scattering
- Axial vector current: F_{A,P} axial vector and induced pseudo-scalar FFs
 - Much less known experimentally (v-d scattering and pion electroproduction, g_P from muon capture)

$$E_{V} = \frac{m_{\mu}^{2} - (m_{p} - E_{b})^{2} - m_{\mu}^{2} + 2(m_{p} - E_{b})E_{\mu}}{2(m_{p} - E_{b} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

$$Q^{2} = 2E_{V}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) - m_{\mu}^{2},$$

QE, ν_{μ} , $\Delta(d\sigma/dQ^2)$ [%] for 1% Change in FF, $M_A=1$

Nucleon form factors

■ LQCD FFs studied from ratios of 2- and 3-point correlators [Martinelli & Sachrajda 1988]

$$R(t,\tau;\mathbf{q}) \sim \sum_{\mathbf{y}} e^{i\mathbf{q}\cdot\mathbf{y}} \frac{\langle 0|\chi(0)\mathcal{O}(\mathbf{y},\tau)\chi^{\dagger}(t)|0\rangle}{\langle 0|\chi(0)\chi^{\dagger}(t)|0\rangle} \longrightarrow \langle N(p)|\mathcal{O}|N(p+q)\rangle$$

Determines ground state FF at large source/operator/sink separation

Isovector nucleon form factors

- EM FFs studied by many groups
 - Recently: almost-physical quark mass
 - Quite different at heavy masses
- Nucleon axial and PS FFs accessible with same techniques
- Statistical uncertainties
- Systematics: volume, temporal extent, lattice spacing, quark mass, N_f=2+1
- AV current not conserved: renormalisation
- Large Q²:challenging in large volumes [Hsu/Fleming; Renner; Cohen/Lin, Della Morte etal.; Roberts et al.]

Isovector axial and PS form factors

	Ν	Action	a [fm]	m	L [fm]	T [fm]	m	Т	Renorm.	Q	Ref
ETMC	2	Twisted Mass	0.06–0.09	260–470	2.1-2.8	4–6	3.3–5	1.0-1.1 (2)	Nonpert	0–1.5	PRD 2011
ETMC	2+ +	Twisted Mass	0.07, 0.09	210,350	2.6, 3.1	5, 6	3.3	1.0,1.2	Nonpert	0–0.7	PRD 2013
ETMC	2+ +	Twisted Mass	0.08	380	2.5	5.0	4.9	0.9-1.6 (9)	Nonpert	0	PLB 2011
PNDME	2+ +	Clover on HISQ	0.12	220, 300	2.9,3.8	7.6	4.4, 4.6	1.0-1.4 (5)	Nonpert	0, in progress	1306.5435
LHPC	2+1	Clover	0.11	320	3.6	10	6	0.7–1.6	None	0–0.7	Green thesis
LHPC	2+1	Clover	0.09, 0.11	150-350	2.8–5.6	2.8–5.6	3.6–5	0.9-1,4	Nonpert	0–0.7	Green ongoing
LHPC	2+1	DWF on Asqtad	0.12	300-750	2.5,3.5	7.7	3.7-9	1.1	Nonpert	0–0.6	PRD 2010
LHPC	2+1	DWF	0.08, 0.11	330-400	2.7	5.4	4–5.5	1.0, 1.2	Nonpert	0	PRD 2010
CLS/M	2	Clover	0.05-0.08	195-650	2.0-4.0	4–6	4–8	0.8-1.3 (4)	Nonpert	0	PRD 2012
QCDSF	2	Clover	0.06-0.08	130–500	1.0–3.5	2.4-4.8	2.6–9	~ . +	Nonpert Improved	0	1302.2233
RBC	2+1	DWF	0.14	170, 250	4.6	9.2	3.9, 5.8	1.0, 1.3	Nonpert	0	LATT13
RBC	2+1	DWF	0.11	350-700	1.8,2.7	5.4	4-8	1.4	Nonpert	0-0.75	PRD 2009
CSSM	2+1	Clover	0.09	290	2.9	5.8	4.3	0.5 (var)	Nonpert	0	PLB 2013
Cohen/Lin	2+1	Aniso Clover	0.12	450–870	2.0	4.4	4.5–8	variational	Perturb	0-4.0	Latt2010

Recent unquenched studies of axial vector current form factors/axial charge with results on arXiv See P Hägler, Phys. Rep. 490 (2010), 49 for earlier works

Isovector axial and PS form factors

My assessment of current calculations: which systematics are treated well and which could be improved

	Ν	Action	a [fm]	m	L [fm]	T [fm]	m	Т	Renorm.	Q	Ref
ETMC	2	Twisted Mass	0.06–0.09	260–470	2.1–2.8	4–6	3.3–5	1.0-1.1 (2)	Nonpert	0–1.5	PRD 2011
ETMC	2+ +	Twisted Mass	0.07, 0.09	210,350	2.6, 3.1	5, 6	3.3	1.0,1.2	Nonpert	0–0.7	PRD 2013
ETMC	2+ +	Twisted Mass	0.08	380	2.5	5.0	4.9	0.9-1.6 (9)	Nonpert	0	PLB 2011
PNDME	2+ +	Clover on HISQ	0.12	220, 300	2.9,3.8	7.6	4.4, 4.6	1.0-1.4 (5)	Nonpert	0, in progress	1306.5435
LHPC	2+1	Clover	0.11	320	3.6	10	6	0.7–1.6	None	0–0.7	Green thesis
LHPC	2+1	Clover	0.09, 0.11	150-350	2.8–5.6	2.8–5.6	3.6–5	0.9-1,4	Nonpert	0–0.7	Green ongoing
LHPC	2+1	DWF on Asqtad	0.12	300-750	2.5,3.5	7.7	3.7-9	1.1	Nonpert	0–0.6	PRD 2010
LHPC	2+1	DWF	0.08, 0.11	330-400	2.7	5.4	4–5.5	1.0, 1.2	Nonpert	0	PRD 2010
CLS/M	2	Clover	0.05-0.08	195-650	2.0-4.0	4–6	4–8	0.8-1.3 (4)	Nonpert	0	PRD 2012
QCDSF	2	Clover	0.06-0.08	130–500	1.0–3.5	2.4-4.8	2.6–9	~ . +	Nonpert Improved	0	1302.2233
RBC	2+1	DWF	0.14	170, 250	4.6	9.2	3.9, 5.8	1.0, 1.3	Nonpert	0	LATT13
RBC	2+1	DWF	0.11	350-700	1.8,2.7	5.4	4-8	1.4	Nonpert	0-0.75	PRD 2009
CSSM	2+1	Clover	0.09	290	2.9	5.8	4.3	0.5 (var)	Nonpert	0	PLB 2013
Cohen/Lin	2+1	Aniso Clover	0.12	450–870	2.0	4.4	4.5–8	variational	Perturb	0-4.0	Latt2010

Recent unquenched studies of axial vector current form factors/axial charge with results on arXiv See P Hägler, Phys. Rep. 490 (2010), 49 for earlier works

Isovector axial and PS form factors

Isovector axial mass, radius

- Perform dipole fits to extract axial mass and radius
 - Dipole fails to describe experiment in vector FF case

Isoscalar nucleon form factors

Isoscalar FFs more difficult: "quark-line disconnected" contributions

- Various techniques for stochastic estimation
- Disconnected contributions typically small
- Strange quark v/av FFs relevant for NC scattering
 - Also difficult experimentally
 - Important place for lattice contributions

Isoscalar axial and pseudo-scalar FFs

	Ν	Action	a [fm]	m	L [fm]	T [fm]	m	Т	Renorm.	Q	Ref
ETMC	2+ +	Twisted	0.08	370	2.6	5.2	4.8	one-end	Nonpert	0, 0.2	PRD 2014
LHPC	2+1	Clower	0.11	320	3.6	10	6	multiple	Not yet	0–0.7	In progress
Bali et al.	2	Clover	0.07	290	2.3, 2.8	4.5	3.3,4.5	0.3	Nonpert	0	PRL (2012)
χQCD	2	overlap on DWF	0.11	330	2.7	7	7.2	?	?	0	Latt 2013
Regensburg	2	Clover	0.07	440	2.3	4.5	5.3	?	Not yet	0-1	Latt 2013

Isoscalar axial and pseudo-scalar FFs

- Truncated solver methods, all mode averaging appear effective
- Promising new way of stochastically sampling: "hierarchical probing" [Stathopoulos, Laeuchli & Orginos]
 - Being used by Meinel et al.

$$G_A^{(u)}(Q^2 = 0)$$
 (disconnected, bare)

Transition form factors

- Resonance region
- Dominant contribution from Δ resonance but N*'s also important at high E_v

$$\langle \Delta(p',s') | A_{\mu}^{3} | N(p,s) \rangle = i \sqrt{\frac{2}{3}} \left(\frac{m_{\Delta} m_{N}}{E_{\Delta}(\mathbf{p}') E_{N}(\mathbf{p})} \right)^{1/2} \bar{u}_{\Delta^{+}}^{\lambda}(p',s')$$

$$\left[\left(\frac{C_{3}^{A}(q^{2})}{m_{N}} \gamma^{\nu} + \frac{C_{4}^{A}(q^{2})}{m_{N}^{2}} p'^{\nu} \right) (g_{\lambda\mu} g_{\rho\nu} - g_{\lambda\rho} g_{\mu\nu}) q^{\rho} + C_{5}^{A}(q^{2}) g_{\lambda\mu} + \frac{C_{6}^{A}(q^{2})}{m_{N}^{2}} q_{\lambda} q_{\mu} \right] u_{P}(p,s)$$

- Very difficult to access experimentally Guess from PCAC
- QCD calculations possible
 - Single calculation to date [Alexandrou et al.]
- Need to account for unstable nature of resonance: extract $N \rightarrow N\pi$ transition FFs

Parton physics

 In inelastic regime, quark PDFs of nucleon control scattering x-sec

$$\frac{d^2 \sigma^{\nu, \overline{\nu}}}{dx \, dy} = \frac{G_F^2 M E_{\nu}}{\pi \, (1 + Q^2 / M_{W,Z}^2)^2} \, \left[\begin{array}{c} \frac{y^2}{2} 2x F_1(x, Q^2) + \left(1 - y - \frac{Mxy}{2E}\right) F_2(x, Q^2) \\ \pm y \, \left(1 - \frac{y}{2}\right) x F_3(x, Q^2) \end{array} \right]$$

- Both CC and NC processes relevant
- Known from global analyses to sufficient(?) accuracy
 - \blacksquare Nuclear effects may be different in $\mathbf{v}A$ vs. eA (MINER $\mathbf{v}A$)
- LQCD typically* calculates low moments of PDFs

$$\langle N|\bar{q}\gamma_{\{\mu_1}D_{\mu_2}\dots D_{\mu_n\}}q|N\rangle$$

- Clean access to strangeness
 - Useful contributions to neutrino program??

Nuclear effects

- Targets are nuclei (C, Fe, Ar, Pb, CH_x, H₂O) so how relevant are nucleon FFs, PDFs?
 - EMC effect
 - Quenching of g_A in GT transitions
 - Estimated ~10% effects on oscillation parameters [C Mariani, INT]
- Experimental investigations: MINERvA
- QCD calculations of few nucleon observables input for EFTbased few-body methods

Gamow-Teller: axial charge in nuclei

- Gamow-Teller transitions in nuclei are a stark example of problems
- Well measured
- Best nuclear structure calculations are systematically off by 20–30%
 - Large range of nuclei
 (30<A<60) where spectrum is well described
 - QRPA, shell-model,...
 - Correct for it by "quenching" axial charge in nuclei ...

$$T(GT) \sim \sqrt{\sum_{f} \langle \boldsymbol{\sigma} \cdot \boldsymbol{\tau} \rangle_{i \to f}}$$

$$\langle \boldsymbol{\sigma} \boldsymbol{\tau} \rangle = \frac{\langle f || \sum_{k} \boldsymbol{\sigma}^{k} \boldsymbol{t}_{\pm}^{k} || i \rangle}{\sqrt{2J_{i} + 1}}$$

Nuclei in QCD (A=2,3,4)

Nuclear matrix elements

- Calculations of matrix elements of currents in light nuclei just beginning
- For deeply bound nuclei, use the same techniques as for single hadron matrix elements

For near threshold states, need to be careful with volume effects

Matrix elements: philosophy

- Power counting of nuclear effective field theory:
 - I-body currents are dominant
 - 2-body currents are sub-leading but non-negligable and higher-body currents are even less important
- Determine one body contributions from single nucleon
- Determine few-body contributions from A=2,3,4...
- Match EFT and many body methods to LQCD to extend to larger nuclei

Nuclear matrix elements

- Axial coupling to NN system
 - pp fusion: "Calibrate the sun"
 - Muon capture: MuSun @ PSI
 - $d\nu \rightarrow nne^+:SNO$

$$\langle N, Z | \bar{q} \gamma_{\{\mu_1} D_{\mu_2} \dots D_{\mu_n\}} q | N, Z \rangle$$

Proof of principle (moments of pion PDF in pion gas) [WD, HW Lin 1112.5682]

Outlook

- lacktriangle Lattice efforts have potential to impact $oldsymbol{v}$ energy determinations
- Outlook for future calculations
 - Connected FFs at 3% circa 2017 [USQCD whitepaper]
 - Disconnected contributions including strangeness: generally small, so overall 3% only needs ~20% on these feasible
 - Large momentum FFs (> GeV) difficult in large volumes but less precision needed. Ideas exist, need testing
 - Transition FFs: tools exist for Δ , but developments necessary for higher states above $N\pi\pi$ inelastic threshold
 - 2-, 3- body matrix elements to constrain nuclear effects

